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We extend the renormalized perturbation theory for the single-impurity Anderson model to the n-channel
model with a Hund’s rule coupling, and show that the exact results for the spin, orbital, and charge suscepti-
bilities, as well as the leading low-temperature dependence for the resistivity, are obtained by working to
second order in the renormalized couplings. A universal relation is obtained between the renormalized param-
eters, independent of n, in the Kondo regime. An expression for the dynamic spin susceptibility is also derived
by taking into account repeated quasiparticle scattering, which is asymptotically exact in the low-frequency
regime and satisfies the Korringa-Shiba relation. The renormalized parameters, including the renormalized
Hund’s rule coupling, are deduced from numerical renormalization-group calculations for the model for the
case n=2. The results confirm explicitly the universal relations between the parameters in the Kondo regime.
Using these results, we evaluate the spin, orbital, and charge susceptibilities, temperature dependence of the
low-temperature resistivity, and dynamic spin susceptibility for the particle-hole symmetric regime of the n
=2 model.
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I. INTRODUCTION

The single-impurity Anderson model1 has played an im-
portant role in understanding many aspects of the behavior of
electrons in systems with strong electron correlation. Non-
perturbative methods have had to be developed to make pre-
dictions for the behavior of the model in the strong interac-
tion regime. Among the most successful have been the
seminal and pioneering work of Wilson and associates2,3

based on the numerical renormalization group �NRG�, and
the exact solutions using the Bethe ansatz for the linear dis-
persion version of the model.4,5 Though the model was origi-
nally put forward to describe magnetic impurities in a host
metal, it has proved to be applicable to many other situa-
tions. One main area of application is as a model for strong
correlation effects in quantum dots.6 In this application cer-
tain parameters of the model, such as the impurity level
which determines the electron occupancy on the quantum
dot, can be varied by a gate voltage. This makes it possible to
sweep through different parameter regimes of the model,
which would be difficult to do for real magnetic impurities,
and so the predictions of the model can be tested more rig-
orously. The presence of the narrow many-body resonance in
the strong correlation �Kondo� regime at low temperatures
can be inferred directly from the measurements of the current
through the dot as a function of an applied bias voltage.7,8

Apart from these direct applications of the model, it has
also played a role in the calculations of strong correlation
effects in lattice models. It is possible to map a class of
infinite dimensional lattice models of strong electron corre-
lation onto an effective Anderson impurity model with a self-
consistency condition, which determines the density of states
of the effective medium.9 This mapping requires that the
self-energy is a function of frequency only which is the case
in the limit of infinite dimensionality, and the mapping is
exact in this limit. For many strongly correlated systems it is

known that the wave-vector dependence of the self-energy is
much less important than the frequency dependence so this
approach can be used as a good first approximation for sys-
tems in three dimensions �dynamical mean-field theory
�DMFT��. As the assumption of linear dispersion is not valid
for the effective impurity model generated in this applica-
tion, there are no exact Bethe ansatz solutions so the most
reliable nonperturbative approaches, such as the NRG, have
to be used.

It has not proved possible so far to access the strong cor-
relation regime of the Anderson model by an approach based
purely on perturbation theory in powers of the local interac-
tion U. However, it has been shown that, if the perturbation
theory is reorganized such that the basic parameters of the
model are renormalized, then a perturbation theory in the

renormalized interaction Ũ, taken only to second order gives
formally the exact results for the low-temperature properties
and low-frequency dynamics, provided counter terms are
taken into account to avoid overcounting.10,11 The renormal-
ized parameters have to be determined but these can be cal-
culated very accurately from an analysis of the low-energy
excitations of an NRG calculation on the approach to the
low-energy fixed point.12 So far this approach has only been
developed in detail for the nondegenerate one channel model
but the approach is one that can be applied to a more general
class of models including lattice models. Here we extend the
calculations to an n-channel impurity Anderson model with
the inclusion of a Hund’s rule exchange term. The Hamil-
tonian takes the form,

H = �
m�

�dm�dm�
† dm� + �

k,m�

�km�ckm�
† ckm�

+ �
km�

�Vkdm�
† ckm� + Vk

�ckm�
† dm�� + Hd �1�

where dm�
† and dm� are creation and annihilation operators
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for an electron in an impurity state with total angular mo-
mentum quantum number l, and z component m=−l ,−l
+1, . . . l, and spin component �= ↑ ,↓. The impurity level in
a magnetic field H we take as �dm�=�d−�B�H−�BmH−�,
where �=1 �↑ � and �=−1 �↓ � and � is the chemical poten-
tial, and �B the Bohr magneton. The creation and annihila-
tion operators ckm�

† and ckm� are for partial wave conduction
electrons with energy �km�. The hybridization matrix element
for impurity levels with the conduction-electron states is Vk.
We denote the hybridization width factor by �m����
=��k�Vk�2���−�km��, which we can take to be a constant �
in the wide flat-band limit. The remaining part of the Hamil-
tonian, Hd describes the interaction between the electrons in
the impurity state, which we take to be of the form,

Hd =
�U − JH�

2 �
mm����

dm�
† dm���

† dm���dm�

+
JH

2 �
mm����

dm�
† dm���

† dm��dm��. �2�

As well as the direct Coulomb interaction U between the
electrons, we include a Hund’s rule exchange term JH be-
tween electrons in states with different m values. The sign
for the exchange term has been chosen so that JH�0 corre-
sponds to a ferromagnetic interaction. This model can be
used to describe transition-metal impurities, such as Fe or Cr,
in a metallic host in the absence of spin orbit or crystal-field
splittings. We can interpret the model more generally with
�=m+ l+1 as a channel index taking values �=1,2 , . . .n,
where n is the number of channels. The Hund’s rule term
tends to align the electrons on the impurity site such that for
large U and large JH the impurity state will correspond to a
spin S=n /2. The model with JH=0 has also been used to
describe capacitively coupled double quantum dots,13 where
the impurity channels correspond to different dots. In that
application, however, the interdot interaction U� will in gen-
eral differ from the intradot interaction U so the case here,
with U�=U, is a special point with SU�2n� symmetry when
JH=0.

The structure of this paper will be as follows. In the next
section, we formulate the renormalized perturbation theory
�RPT� for this model in terms of the renormalized param-

eters, �̃d, �̃, Ũ, and J̃H. We then show that the low-
temperature behavior, as measured by the charge and spin
susceptibilities and the low-temperature contribution to the
resistivity, can be obtained exactly from the RPT taken to

second order in powers of Ũ and J̃H. In the localized or

Kondo regime we show that �̃, Ũ, and J̃H can be expressed
in terms of a single parameter which we take as the Kondo
temperature TK. This relation is independent of the channel
index n and hence applies to all values of n. Though we

cannot calculate �̃, Ũ, and J̃H for the general n model using
the NRG we can calculate them for the two channel case n
=2. We look at this in detail for the case of particle-hole
symmetry and confirm the universal relations between the
renormalized parameters in the Kondo regime predicted us-
ing the RPT.

II. RENORMALIZED PERTURBATION THEORY

We start with the Fourier transform of the single-particle
Green’s function for the impurity d state,

Gd,��	n�� = − �
0




�T�dm����dm�
† �0�	ei	n��d� , �3�

where 	n�= �2n�+1� /
 and 
=1 /T and the brackets � . . . 	
denote a thermal average,

Gd,m��	n� =
1

i	n − �dm� + i� sgn�	n� − �m��	n,H�
, �4�

where �m��	n ,H� is the self-energy. For the zero-
temperature Green’s function, which will be our main con-
cern, 	n can be replaced by a continuous variable 	, and
summations over 	n replaced by integrations over 	. For the
perturbation theory in powers of U and JH, it will be conve-
nient to separate the interaction terms in the Hamiltonian into
the terms involving interactions between electrons in the
same channel and those between electrons in different chan-
nels. We rewrite the Hamiltonian from Eq. �2� in the form,

Hd = U�
m

nd,m↑nd,m↓ +
�U − JH�

2 �
m�m����

dm�
† dm���

† dm���dm�

+
JH

2 �
m�m����

dm�
† dm���

† dm��dm��. �5�

The vertices associated with the three types of interaction
terms are illustrated in Fig. 1.

For the renormalized perturbation theory, the Green’s
function in Eq. �4� can be reexpressed as Gd,m��	n�
=zG̃d,m��	n�, where G̃d,m��	n� is the quasiparticle Green’s
function given by

G̃d,m��	n� =
1

i	n − �̃dm� + i�̃ sgn�	n� − �̃m��	n,H�
�6�

and the renormalized parameters, �̃dm� and �̃ are given by

�̃dm� = z��d + �m��0,H�� − �B�H − �BmH, �̃ = z� ,

�7�

where z=1 / �1−��m��	 ,0� /��i	�� evaluated at 	=0. The

quasiparticle self-energy �̃m,��	 ,H� is given by

m
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FIG. 1. The three interaction vertices corresponding to the terms
in the Hamiltonian given in Eq. �5�.

NISHIKAWA, CROW, AND HEWSON PHYSICAL REVIEW B 82, 115123 �2010�

115123-2



�̃m��	,H� = z
�m��	,H� − �m��0,H� − i	� ��m��	,0�
�i	

�
	=0

� ,

where we have assumed the Luttinger theorem,14 Im ��0�
=0, so that Im �̃m��	�
	2 as 	→0. When expressed in
this form, the 	=0 part of the self-energy and its derivative
have been absorbed into renormalizing the parameters �dm�

and �, so in setting up the perturbation expansion any further
renormalization of these terms must be excluded, or it will
result in overcounting. In working with the fully renormal-
ized quasiparticles, it is appropriate to use the renormalized
or effective interactions between the quasiparticles. In the
single-channel case, we defined the renormalized interaction

Ũ in terms of the four vertex 
↑,↓,↓,↑�	1 ,	2 ,	3 ,	4� in the
zero-frequency limit.10 In this case we need to consider the
more general four vertex, 
m3�3;m4�4

m1�1;m2�2�	1 ,	2 ,	3 ,	4�, which
corresponds to the Fourier coefficient of the connected skel-
eton diagram for the two-particle Green’s function,

�T�dm1�1
��1�dm2�2

��2�dm3�3

† ��3�dm4�4

† ��4�	 �8�

with the external legs removed. Using the fact that the spin
and angular momentum are conserved independently, and
taking into account the antisymmetry conditions of the fer-
mion creation and annihilation operators, it was shown by
Yoshimori15 that this vertex at zero frequency can be ex-
pressed in terms of two parameters, 
C and 
e, as


m3�3;m4�4

m1�1;m2�2�0,0,0,0� = 
C��m4

m1�m3

m2��4

�1��3

�2 − �m3

m1�m4

m2��3

�1��4

�2�

+ 
e��m3

m1�m4

m2��4

�1��3

�2 − �m4

m1�m3

m2��3

�1��4

�2� .

�9�

To first order in the interaction terms, U and JH, we have

C=U−JH and 
e=JH. We generalize this result to specify

the renormalized parameters, Ũ, and J̃H, by the relation,

z2
m3�3;m4�4

m1�1;m2�2�0,0,0,0� = �Ũ − J̃H���m4

m1�m3

m2��4

�1��3

�2

− �m3

m1�m4

m2��3

�1��4

�2� + J̃H��m3

m1�m4

m2��4

�1��3

�2

− �m4

m1�m3

m2��3

�1��4

�2� , �10�

where the factor z2 arises from the rescaling of the fields to
define the quasiparticle Green’s function given in Eq. �6�.
For n=1, this reduces to

z2
�3;�4

�1;�2�0,0,0,0� = Ũ���4

�1��3

�2 − ��3

�1��4

�2� , �11�

which is the definition of Ũ used in earlier work.10

We can combine these terms to define a quasiparticle

Hamiltonian H̃,

H̃ = �
m�

�̃dm�d̃m�
† d̃m� + �

km�

�km�ckm�
† ckm�

+ �
km�

�Ṽkd̃m�
† ckm� + Ṽk

�ckm�
† d̃m�� + H̃d, �12�

H̃d =
�Ũ − J̃H�

2 �
mm����

: d̃m�
† d̃m���

† d̃m���d̃m�:

+
J̃H

2 �
mm����

: d̃m�
† d̃m���

† d̃m��d̃m��: . �13�

The brackets: Ô: indicate that the operator Ô within the
brackets must be normal ordered with respect to the ground
state of the interacting system, which plays the role of the
vacuum. This is because the interaction terms only come into
play when more than one quasiparticle is created from the
vacuum.

The renormalized Hamiltonian is not equivalent to the
original model, and the relation between the original and
renormalized model is best expressed in the Lagrangian for-
mulation, where frequency enters explicitly.11 For simplicity,
we consider the case in the absence of a magnetic field,
where the energy levels �dm� are independent of m and �. If
the Lagrangian density L��d ,� ,U ,JH� describes the original
model, then by suitably rearranging the terms we can write

L��d,�,U,JH� = L��̃d,�̃,Ũ, J̃H� + Lc��1,�2,�3,�4� , �14�

where the remainder part Lc��1 ,�2 ,�3 ,�4� is known as the
counter term and takes the form,

Lc��1,�2,�3,�4� = �
m�

d̃̄m������2�� − �1�d̃m���� + ��3 − �4�

� �
mm����

d̃̄m,����d̃̄m������d̃m������d̃m����

+ �4 �
mm����

d̃̄m����d̃̄m������d̃m,�����d̃m����� ,

�15�

where �1=−��0�, �2=z−1, �3= �z2U− Ũ� /2, and �4= �J̃H

−z2JH� /2 and d̃̄m����, d̃m���� are the Grassmann variables
corresponding to the d-electron creation and annihilation op-
erators that have to be integrated over in calculating the par-
tition function. Though we can express the coefficients �i, i
=1,2 ,3 ,4, explicitly in terms of the self-energy terms and
vertices at zero frequency, these relations are not useful in
carrying out the expansion. We want to work entirely with
the renormalized parameters and carry out the expansion in

powers of Ũ and J̃H. We assume that the �i can be expressed

in powers of Ũ and J̃H, and determine them order by order
from the conditions that there should be no further renormal-
ization of quantities taken to be already fully renormalized.
These conditions are

�̃m��0,0� = 0, � ��̃m��	,0�
�i	

�
0

= 0, �16�

and that the renormalized four vertex at zero frequency,


̃m3�3;m4�4

m1�1;m2�2�0,0 ,0 ,0� is such that
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̃m3�3;m4�4

m1�1;m2�2�0,0,0,0� = �Ũ − J̃H���m4

m1�m3

m2��4

�1��3

�2 − �m3

m1�m4

m2��3

�1��4

�2�

+ J̃H��m3

m1�m4

m2��4

�1��3

�2 − �m4

m1�m3

m2��3

�1��4

�2� .

�17�

In the field theory context, these conditions are more com-
monly known as the renormalization conditions. They follow
directly from the definitions of the renormalized self-energy
in Eq. �7� and the definitions of the renormalized parameters
given in Eq. �10�.

The propagator in the RPT is the free quasiparticle
Green’s function,

G̃d,m�
�0� �	n� =

1

i	n − �̃dm� + i�̃ sgn�	n�
. �18�

The spectral density of the corresponding retarded Green’s
function gives the free quasiparticle density of states, �̃m�

�0� �	�
given by

�̃m�
�0� �	� =

�̃/�

�	 − �̃dm��2 + �̃2
. �19�

From Fermi-liquid theory, the quasiparticle interaction terms
do not contribute to the linear specific-heat coefficient � of
the electrons. It follows that the impurity contribution to this
coefficient is proportional to the free quasiparticle density of
states evaluated at the Fermi level and is given by

� =
�2

3 �
m,�

�̃m�
�0� �0� . �20�

In the absence of a magnetic field, this reduces to �
=2n�2�̃0�0� /3, where �̃�0��0� is the quasiparticle density of
states per single spin and channel.

If we integrate the free quasiparticle density of states in
Eq. �19� to the Fermi level then we get �ñdm�	 at T=0, which
is given by

�ñdm�	 =
�m�

�
=

1

2
−

1

�
tan−1
 �̃dm�

�̃
� , �21�

which defines the phase shift �m� in the channel with quan-
tum numbers m and �. For this model, it has been shown by
Shiba16 that �ndm�	=�m� /�, giving a generalization of the
Friedel sum rule, so that we have �ñdm�	= �ndm�	; the quasi-
particle occupation number in each channel is equal to the
impurity occupation number in that channel. However,
Yoshimori and Zawadowski17 have shown that this form of
the Friedel sum rule does not hold for a more general model
in which scattering processes can occur between m states,
m1 ,m2→m3 ,m4, such that m1+m2=m3+m4. They derive a
restricted form of the sum rule such that �m�am��ñdm�	
=�m�am��dm� /�, where am�=1,� ,m. In this more general
case, therefore, the quasiparticle number does not equal the
occupation number in the same channel but we have the
more restricted result, �m�am��ñdm�	=�m�am��ndm�	. Using
either result, however, we can derive expressions for the
zero-field spin �s, orbital �orb, and charge �c susceptibilities.
We differentiate the combinations, �m�am��ñd,m�	, with am�

=�, m and 1, respectively, with respect to the magnetic field
or in the charge case with respect to �d. To evaluate these
expressions we need to calculate the renormalized self-

energy. This calculation taken to first order in Ũ and J̃H pro-
ceeds as in the one-channel case,10,11 and gives

�s = 2n�B
2 �̃�0��0��1 + �Ũ + �n − 1�J̃H��̃�0��0�� , �22�

�orb =
�n2 − 1��B

2 �̃�0��0�
12

�1 + �Ũ − 3J̃H��̃�0��0�� , �23�

and

�c = 2n�̃�0��0��1 − ��2n − 1�Ũ − 3�n − 1�J̃H��̃�0��0�� .

�24�

These results can also be obtained from a mean-field
theory on the quasiparticle part of the Hamiltonian given in
Eq. �13�.18,19 It can be shown using the Ward identities de-
rived by Yoshimori,15 which are generalizations of the Ward
identities derived by Yamada20,21 for the single-channel case,
that these results are exact. Hence all higher-order correction

terms in Ũ and J̃H cancel out.
In the localized regime a large value of U suppresses the

charge fluctuations on the impurity so �c
0. Treating this as

an equality, we get a relation between �̃�0��0�, Ũ, and J̃H,

��2n − 1�Ũ − 3�n − 1�J̃H��̃�0��0� = 1. �25�

Similarly when the Hund’s rule interaction JH ��0� is large it
will suppress the local orbital fluctuations, as the configura-
tion with the spins aligned will be favored. For JH���, we
can expect the orbital fluctuations to be almost fully sup-
pressed so that �orb
0 which, as an equality, gives a further

relation between �̃�0��0�, Ũ, and J̃H,

�3J̃H − Ũ��̃�0��0� = 1. �26�

We explore the consequences of the relation �26� first of all
for the model with JH=0. If we combine the orbital m and
spin indices � into an index �= �m ,�� then it can be shown
that the model with JH=0 has SU�2n� symmetry so we will
refer to the model in this limit as the SU�2n� Anderson
model.22 With JH=0, in the localized limit we have from Eq.
�25�,

Ũ =
��̃

�2n − 1�
, �27�

which agrees with the one channel result Ũ=��̃ for n=1.
This gives a “� /�” or Wilson ratio, RW=�2�s /3�B

2 �
=2n / �2n−1�.

We return to consider the model with a finite Hund’s rule
coupling JH�0. For the case of half filling, where �̃d=0 and

�̃�0��0�=1 /��̃, the nonlinear relation between the renormal-
ized parameters in Eqs. �25� and �26� become linear relations

between �̃, Ũ, and J̃H,
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��̃ = �2n − 1�Ũ − 3�n − 1�J̃H �28�

and

��̃ = 3J̃H − Ũ . �29�

An equivalent condition to that in Eq. �29� can be obtained
using the argument of Nozières and Blandin23 that the occu-
pation number in a channel m should be independent of any
small change in the chemical potential in a channel m��m
in this regime. When both the local charge and orbital fluc-
tuations are suppressed, the renormalized parameters can be
expressed in terms of the Kondo temperature TK. We define
TK by writing the spin susceptibility in the form,

�s =
�g�B�2S�S + 1�

3TK
, �30�

where S=n /2 and g=2. From Eq. �22� we deduce that
1 / �̃�0��0�=4TK, which gives for the Wilson ratio in the
Kondo limit, RW=�2�s /3�B

2 �=2�n+2� /3.15,23

From Eqs. �25� and �26� for the particle-hole symmetric

case, we find 1 / �̃�0��0�=��̃=4TK, and we then find

��̃ = Ũ =
3

2
J̃H = 4TK, �31�

which was conjectured earlier on the basis of a phenomeno-
logical mean-field approach.18,19 A notable feature of this re-
sult is that there is no explicit dependence on n.

Yoshimori15 has also derived an exact result for the low-
temperature impurity contribution to the resistivity in the
particle-hole symmetric case and H=0. In terms of the renor-
malized parameters, the result is

R�T� = R0�1 −
�4�1 + 2IR�T2

3
+ O�T4�� , �32�

where IR is given by

IR = ��̃�0��0��2��2n − 1�Ũ2 − 6�n − 1�J̃H�Ũ − J̃H�� . �33�

This result can be derived in the RPT from a calculation of

the renormalized self-energy �̃�	� to second order in Ũ and

J̃H. With the Hund’s rule interaction term, there are several
types of second-order scattering diagrams which are illus-
trated in Fig. 2. The vertices are of the same type as shown in
Fig. 1 but are weighted by the renormalized interaction
terms. The calculations follow along similar lines to those for
the single-channel case n=1.10,11 The first-order diagrams
and the terms linear in 	 are canceled by the counter terms to
this order, and there are no corrections from the counter
terms to the vertices to second order for the case with
particle-hole symmetry. The contributions to IR from dia-
grams of the types �i� to �iv�, respectively, in units of

��̃�0��0��2 are Ũ2; 2�n−1�J̃H
2 ; 2�n−1��Ũ− J̃H�2; −2�n

−1�J̃H�Ũ− J̃H�; which give the result in Eq. �33�.
In the localized regime at half filling the result in Eq. �32�

simplifies to give

R�T� = R0�1 −
�4�5 + 4n�

96

 T

TK
�2

+ O�T4�� , �34�

which agrees with the result derived by Nozières24 and
Yamada20,21 for the case n=1. Thus all the exact Fermi-liquid
relations can be derived from the RPT taken to second order
only.

It was shown in earlier work25 that the RPT approach can
provide a description of the dynamic spin susceptibility for
the n=1 model in the low-frequency regime. The calculation
takes account of the repeated quasiparticle scattering, giving
results which are exact in the low-frequency limit 	→0, and
in remarkably good agreement with the results from a direct
NRG calculation. We extend the calculation to the n-channel
model given in Eqs. �1� and �2�. We consider the Fourier
transform of the transverse spin susceptibility,

�s
+−�i	n�� = �

0


 �T��
m

Sd,m
+ ����

m�

Sd,m�
− �0��ei	n��d� ,

�35�

where 	n�=2�n� /
 and Sd,m
+ =dm↑

† dm↓, Sd,m
− =dm↓

† dm↑ �Sd,m
z

= �nd,↑−nd,↓� /2�. We consider the scattering of a spin-up qua-
siparticle with a spin-down quasihole both in channel m, in
the absence of a magnetic field. This particle-hole pair can
scatter into a particle-hole pair in the same channel m or a
different channel m��m. We consider the scattering into the
same channel first of all. The matrix element for this process

is Ũ, except we must allow for the fact that Ũ already takes
into account these processes for 	=0 so, to prevent over-

counting, we must use Ũ−�3, where �3 is the corresponding

counter term. It will be convenient to use the notation Ũeff

for Ũ−�3. Just taking this type of repeated scattering into
account gives us a result which has the same form as in the
single-channel case n=1,25

�s
+−�	 + i�� = 4n�B

2 �̃+−�	 + i��

1 − Ũeff�̃
+−�	 + i��

, �36�

where we have analytically continued to real frequency 	.
The free quasiparticle-quasihole propagator in a single chan-
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FIG. 2. Second-order diagrams in the renormalized perturbation
theory.
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nel, �̃+−�	+ i��, is independent of the channel index in the
absence of a magnetic field, and is given by

�̃+−�	 + i�� =
�̃

���̃d
2 + �̃2�

, 	 = 0

=
− �̃

�	�	 + 2i�̃�
�ln
1 +

	

�̃d + i�̃
�

+ ln
1 −
	

�̃d − i�̃
�� 	 � 0 �37�

for �→+0. We must also take into account that the
quasiparticle-quasihole pair being created in channel m can
scatter into a different channel m�, and also be finally anni-
hilated in a channel with m��m. The matrix element for this

type of scattering is J̃H, corresponding to the diagram in Fig.

1 �ii�, but again, to avoid overcounting, we replace it by J̃H
eff.

In the absence of a magnetic field, the quasiparticle-
quasihole propagator is independent of the channel index m,
so the summation over the states m� introduces a factor n
−1. The result of taking these scattering processes into ac-

count is that the pair propagator �̃+−�	+ i�� in Eq. �36� is
replaced by

�̃+−�	 + i��

1 − J̃H
eff�n − 1��̃+−�	 + i��

, �38�

which leads to the result,

�s
+−�	 + i�� = 4n�B

2 �̃+−�	 + i��

1 − �Ũeff + �n − 1�J̃H
eff��̃+−�	 + i��

.

�39�

We need to determine the combination Ũeff+ �n−1�J̃H
eff. We

can do this by requiring that this expression gives 2�s in the
zero-frequency limit, which is equivalent to the requirement
that these scattering processes contribute to the four vertex at
zero frequency are not overcounted. This condition gives

Ũeff + �n − 1�J̃H
eff =

Ũ + �n − 1�J̃H

1 + �Ũ + �n − 1�J̃H��̃�0��0�
. �40�

In the Kondo regime, this condition simplifies to Ũeff+ �n
−1�J̃H

eff=2TK�1+2n� / �2+n�, which gives the one-channel re-

sult Ũeff=2TK for n=1.
By rewriting Eq. �39� in the form,

4n�B
2

�s
+−�	 + i��

=
1

�̃+−�	 + i��
− �Ũeff + �n − 1�J̃H

eff� , �41�

and taking the imaginary part, it is straight forward to show
that the expression for �s�	� satisfies the exact Korringa-
Shiba relation,

lim
	→0

Im �+−�	 + i��
	

=
��s

2

n�B
2 , �42�

which was proved for this model by Shiba16 and more gen-
erally by Yoshimori and Zawadowsi.17

So far we have not discussed how one can calculate the

renormalized parameters �̃d, �̃, Ũ, and J̃H. In the Kondo
regime, these reduce to a single parameter TK so one possi-
bility is to deduce its value from experiment by fitting the
predictions to the measurements of a physical quantity in the
low-temperature regime, say, the impurity susceptibility or
resistivity. Outside the Kondo regime, we have four param-
eters to determine, and to calculate all four from experiment
one loses much of the predictive power of the approach.
However, it was shown earlier for the single-channel Ander-

son model how the parameters, �̃d, �̃, and Ũ, can be calcu-
lated in terms of the bare parameters, �d, �, and U, from the
many-body low-energy excitations of an NRG calculation.12

There are problems in carrying out this procedure for the
general n-channel model, due to the truncation of states
which has to be carried out in an NRG calculation to reach
the very low-energy scales. Truncation means that only a
fraction 1 /4n states can be retained at each NRG iteration. It
is possible, however, for the case n=2 to compensate for the
lower percentage by increasing the number of states kept at
each iteration as the matrices do not get so large. In the next

section, we present calculations of �̃, Ũ, and J̃H, in terms of
�, U, and JH, for the n=2 model.

III. NRG CALCULATION OF THE RENORMALIZED
PARAMETERS FOR N=2

The two-channel model the Hamiltonian Hd given in Eq.
�2� can be reexpressed in the form,

Hd = U �
�=1,2

nd�↑nd�↓ + U12�
���

nd,1�nd,2�� − 2JHSd,1 · Sd,2

�43�

with a ferromagnetic Heisenberg exchange coupling 2JH be-
tween the electrons in the different channels, and U12=U
−3JH /2. Our calculations will be restricted to the particle-
hole symmetric model so we take �d=−U /2−U12 in the one-
electron part of the Hamiltonian given in Eq. �1�. The energy
of the two-electron triplet state of the isolated impurity with
particle-hole symmetry is −2U+JH and that of the four-
electron or zero-electron state is 0 so if we are interested in
the case when the triplet state is the ground-state configura-
tion, we need to consider the regime U�JH /2.

For the NRG calculations, the model is recast in a form
such that the impurity is coupled via a hybridization V to two
tight-binding chains which describe the conduction-electron
states, one chain for each channel. The conduction-electron
band is discretized with a discretization parameter ��1,
such that the couplings decrease along the chains as �−N/2 for
large N, where N is the Nth site along the chain from the
impurity. The calculations are then carried out iteratively by
direct diagonalization, starting at the impurity site and add-
ing one further site to each chain at each iteration step. The
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number of basis states used has to be truncated when the
matrices get too large for diagonalization on a practical time
scale, which can occur after only a few iterative steps. When
truncation is applied a fixed number of states is retained at
each step. For the n=2 model considered here, we take 3600
states, which is a factor of 3 to 4 more than for the nonde-
generate model �n=1� and a discretization factor �=6. We
can check the expected accuracy of our calculations by using

this value for � to calculate Ũ and ��̃ for the single-channel
model and compare with the values deduced indirectly from
the exact Bethe ansatz results for the specific-heat coefficient
� and the zero-temperature spin susceptibility.12 For U /��

=2, ��=0.01, keeping 900 states, we get the values, Ũ

=0.2295 and ��̃=0.2387, which can be compared with

those deduced from the Bethe ansatz, Ũ=0.2301 and ��̃
=0.2392. This gives an accuracy of better than 0.3%. For
further details on setting up the NRG calculations, we refer
to the original papers2,3 and the recent review article.26

With this discrete spectrum, the Green’s function in Eq.
�4� takes the form,

Gd,��	� =
1

i	 − �dm� − �V�2g���i	� − �m��	�
, �44�

where g���i	� is the Green’s function for the first site for the
isolated conduction-band chain.

The connection between the NRG approach and the renor-
malized perturbation theory is based on identifying the qua-
siparticle Hamiltonian, given in Eqs. �12� and �13�, as the
low-energy fixed point of the NRG together with the leading
irrelevant terms.27 The lowest single-particle excitations
from the NRG ground state should correspond to a quasipar-
ticle excitation described by the one-body part of the quasi-
particle Hamiltonian as given in Eq. �12�. For the calculation

of the interaction terms, Ũ and J̃H, from the NRG we have to
consider the difference between two-body excitations from
the NRG ground state and the two corresponding one-body
excitations.

The low-energy single-particle excitations are given by
the poles of the noninteracting quasiparticle Green’s function
when analytically continued to real frequency 	. The equa-
tion for these poles is the same as that for the noninteracting

model but with a renormalized hybridization Ṽ and energy
level �̃d. Therefore, the lowest-energy single-particle and
hole excitations, Ep�N� and Eh�N�, from the interacting
ground state should be solutions of the equation,

	 − �̃d − �Ṽ�2g���	� = 0. �45�

If we substitute the excitations energies, Ep�N� and Eh�N�, as
calculated in the NRG for a finite chain length N, into Eq.
�45� then we can deduce corresponding N-dependent renor-

malized parameters Ṽ�N� and �̃d�N�. Only if Ṽ�N� and �̃d�N�
become independent of N for large N, do the low-energy
one-particle energy levels of the interacting system corre-
spond to those of a renormalized noninteracting model. If
this is the case, then the asymptotic values for large N define

the renormalized parameters Ṽ �and hence �̃� and �̃d.

To calculate the renormalized interaction terms, we first
have to diagonalize the noninteracting impurity model with
the renormalized parameters, which describes the quasiparti-
cles. The interaction terms are then added to the quasiparticle
Hamiltonian and expressed using the diagonalized single
quasiparticle states as a basis. The energy difference between
the lowest two-particle state and the sum of the correspond-
ing two quasiparticle states is equal to the expectation value
of interaction terms in the quasiparticle Hamiltonian. The

interaction parameter Ũ can be calculated from the NRG
results for the lowest two-particle excitation in the same

channel which will be independent of J̃H. For a finite length

chain N, the value Ũ�N� will depend upon N, and for this to

correspond to a low-energy quasiparticle Hamiltonian Ũ�N�
should become independent of N for large N. The asymptotic

values of Ũ�N� for large N defines the renormalized param-

eter Ũ. Similarly, to calculate J̃H we look at the difference
between the single and triplet states of a two-particle excita-
tion with one electron excitation in each of the two channels.

This excitation will be independent of Ũ and depend only on

J̃H. Using the NRG results for a finite chain of N sites, we

can define a parameter J̃H�N�, with J̃H given by the

asymptotic value of J̃H�N� for large N. Further details on the
calculations of the renormalized parameters from the low
energy NRG states can be found in Ref. 12.

We first show results for the renormalized parameters as a
function of N. We show a typical case in Fig. 3 for the

parameters Ũ�N�, ��̃�N�, and 3J̃H�N� /2 as a function of N
for ��=0.01, U /��=3.6, and JH /��=0.15, which is a pa-
rameter set corresponding to a point in the Kondo regime
where the orbital fluctuations have been suppressed. The re-
sults demonstrate that not only is there a plateau region for
all the parameters for large N but also that the asymptotic

values of Ũ�N�, ��̃�N�, and 3J̃H�N� /2 correspond to a single
energy scale and satisfy the relation given in Eq. �31�. The
choice of a relatively large value of �=6 means that the
convergence to a plateau region is achieved for relatively
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FIG. 3. �Color online� A plot of ��̃�N� /��, Ũ�N� /��, and

3J̃H�N� /2�� versus N for U /��=3.6 JH /��=0.15, and ��
=0.01. The inset shows the convergence of these parameter to a
common limit in this case as the bare parameters correspond to a
point in the Kondo regime.
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small values of N. The plateau region is finite because the
renormalized parameters correspond to the leading irrelevant
corrections to the free fermion fixed point of the Wilson
renormalization-group transformation2 so eventually they di-
verge from the plateau when N is such that the decreasing
irrelevant corrections become of the same order as the un-
certainties in the numerical computation.

Having described how to calculate the the renormalized
parameters and established that the method is capable of pro-
viding very accurate results for the model including the
Hund’s rule coupling, we investigate in detail the results in
the different parameter regimes.

A. SU(4) model (JH=0): Symmetric case

We begin with the results for the model with JH=0 which
has SU�4� symmetry, and restrict our attention for the mo-
ment to the particle-hole symmetric case. In Fig. 4, we show
the results for �̃ /3� and Ũ /�� versus U /�� �JH=0, ��
=0.01�. We predicted from Eq. �27� that for large U /�� we
should have a single energy scale such that for n=2, Ũ
=��̃ /3 and the results clearly show that this is the case for
U /���3. The numerical results for the ratio Ũ /��̃ for
large U give the value 1/3 to an accuracy of 0.01%.

In Figs. 5 and 6, we compare the results for these two
quantities with those for the single-channel model n=1. We
can see that the parameters �̃ and Ũ the fall off with increase
in U much more slowly for the two channel model. This is
because in the two-channel model, we have unsuppressed
fluctuations of the orbital component. When JH=0 and finite
U, at half filling in the isolated impurity for the two-channel
model there are six degenerate two-electron configurations
with energy 2�d+U. Both the n=1 and n=2 models in the
Kondo regime can be described by localized SU�2n� Kondo
model. For the case n=1 it is the s-d or SU�2� Kondo model
and for n=2 the Coqblin-Schrieffer or SU�4� Kondo
model.32 The Hamiltonian for the SU�2n� Kondo model
takes the form,

HK�2n� = Jeff �
�,��,k,k�

Y�,��ck�,��
† ck,� + �

�,k
�kck,�

† ck,�, �46�

where the sum over �=1,2 , . . .2n, and with particle-hole
symmetry Jeff=4�V�2 /U. The operators Y�,�� obey the SU�2n�
commutation relations,

�Y�,��,Y��,���− = Y�,�����,�� − Y��,����,��, �47�

with ��Y�,�=nI. For n=1, Y�,��= ��	����, where ��	 are the
single-electron impurity states with spin up ��=1� and spin
down ��=2�, giving a two-dimensional representation for the
Y�,��. In the two-channel case for half filling, the representa-
tion of the operators Y�,�� is six dimensional and details of
the Y�,�� in terms of the two-electron impurity states are
given in the Appendix.

In the single-channel case n=1, TK is known from the
Bethe ansatz solution, and is given by TK /��

=�u /2�e−�2u/8+0.5/u, where u=U /��,28 and the NRG results

for TK deduced from ��̃ are in precise agreement with this
expression for large U. For n�2, there is no Bethe ansatz
solution for the model with finite U. However, there is a
Bethe ansatz solution for the SU�N� Kondo model �Coqblin-
Schrieffer model� and the N-fold degenerate Anderson model
with U=� �Refs. 29–31� which gives in the exponential for
TK a factor proportional to 1 /N. The prefactor is not univer-
sal and depends on the cutoffs used for the high-energy ex-
citations in the model. We have taken for the two-channel
case, therefore, the expression TK /��

=1.01ue−�2u/16+0.25/u /2�, where the prefactor has been cho-
sen to give the most reasonable fit to the data. The result of
this fitting is shown in Fig. 7, where it can been seen that the

0 1 2 3 4 5 6 7 8
U/

0

0.1

0.2

0.3

0.4

U/

~

~ 4 6 8 10 12 14
U/

0

0.05

0.1

U/

~

~

FIG. 4. �Color online� A plot of ��̃ /3�� and Ũ /�� versus
U /�� for JH=0 and ��=0.01.
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FIG. 5. �Color online� A comparison of �̃ /� versus U /�� for
the n=1 and n=2 models for JH=0 and ��=0.01. The inset shows

the corresponding values for the Wilson ratio RW=1+ Ũ /��̃.
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FIG. 6. �Color online� A comparison of Ũ /�� versus U /�� for
the n=1 and n=2 models for JH=0 and ��=0.01.
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agreement is very good in the strong-coupling range U /��
�4.0. The same form for TK was used in Ref. 22, and found
to be in good agreement with their NRG results.

B. Model with JHÅ0: Symmetric case

In Fig. 8, we look at the effect of switching on the Hund’s
rule term JH for a relatively large value of U, U /��=4.0,
which is sufficient to suppress the charge fluctuations. As we
increase JH, we begin to suppress also the orbital fluctua-
tions, such that when JH /���0.1 we are in the regime
where we have a single energy scale. This we refer to as the
Kondo regime with the Kondo temperature in the particle-

hole symmetric case given by ��̃=4TK. The Wilson ratio is
shown in the inset of Fig. 8 and rises steadily from the value
4/3 for JH=0 to 8/3 in the Kondo regime, corresponding to
the results given earlier for these limits, 2n / �2n−1� and
2�n+2� /3, for n=2. We note also in the Kondo regime the

renormalized parameters are such that Ũ12= Ũ−3J̃H /2=0.
In Fig. 9, we plot the corresponding spin, orbital, and

charge susceptibilities using the expression for these given in
Eqs. �22�–�24� for the set of parameters used for Fig. 8. The

fact that the charge susceptibility is almost zero, due to the
large value of U, U /��=4.0, means that the renormalized
parameters must satisfy Eq. �28�. This provides some insight

into why the value of Ũ increases initially as JH is switched

on. For small JH, the change in J̃H is almost linear whereas

the change in ��̃ is relatively small. Therefore to satisfy Eq.

�28�, Ũ must also increase almost linearly in this region. We
can also see from Fig. 9 that the orbital susceptibility is small
�multiplied by a factor 10 in the figure�, and decreases mono-
tonically as JH increases.

In Fig. 10, we explore a different parameter regime. Here

the parameters �̃, Ũ, and 3J̃H /2 are plotted for a range of
values of U for JH /��=0.05. We see that for this smaller
value of JH a large value of U /��
5.5 is required before
the orbital fluctuations are suppressed and the Kondo regime
is achieved. We suggest that the explanation for this behavior

is that a large U strongly renormalizes �̃ so that the relatively
weaker JH is then sufficient to suppress the orbital fluctua-

tions. In the large U limit, �̃
TK, it implies that the relevant
criterion for estimating the effects of a relatively weak JH is
the ratio, JH /TK. We can see this more explicitly by calcu-
lating the Wilson ratio RW in the localized limit when the
charge susceptiblity is negligible and �c=0. From Eqs. �22�
and �25� we find
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FIG. 7. �Color online� A plot of TK /�� as a function of U /��
for JH=0 and ��=0.01. The dashed curve corresponds to the for-
mula 1.01ue−�2u/16+0.25/u /2�, where u=U /��. The inset shows a
plot of the logarithm for the same two curves.
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sus JH /�� for U /��=4.0 and �=0.01. There is a single renormal-
ized energy scale when JH /���0.1. The inset shows the corre-

sponding Wilson ratio, RW=1+ �Ũ+ J̃H� /��̃.
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RW = 2� nŨ − �n − 1�J̃H

�2n − 1�Ũ − 3�n − 1�J̃H

� . �48�

So this ratio depends on J̃H / Ũ, and is valid for all values of

JH when U /�� is large. When JH is very weak J̃H / Ũ

JH /TK, where TK is the Kondo temperature for JH=0.

When J̃H is large J̃H / Ũ=2 /3. An example of how the Wilson
ratio changes with JH, for large U /��, is shown in the inset
of Fig. 8 for n=2 over the range 0�JH /���0.2 for
U /��=4

It is of interest to compare the expression in Eq. �48� with
the corresponding result of Nevidomskyy and Coleman33 for
the Wilson ratio of n single-channel Kondo models �coupling
J� with the impurity spins coupled by a Hund’s rule term
�JH�, which takes the form,

RW = 2�1 +
�n − 1�

2�1 + �� + 1
� , �49�

where �=U� /JH
� 
JH�TK, and U�, JH

� are renormalized
channel-conserving and interchannel interactions associated
with the Fermi-liquid fixed point, respectively, but which are
not completely specified. With the assumption that �→0 in
the limit of strong Hund’s rule coupling this gives RW=2�n
+2� /3. If we rewrite the result in Eq. �48� in the form given
in Eq. �49�, we find an explicit expression for � in terms of

Ũ and J̃H,

� =
n + 1

2 
2Ũ − 3J̃H

2J̃H − Ũ
� . �50�

In this case when the Hund’s rule coupling is strong, we get

the result �=0 through cancellation as 2Ũ=3J̃H. In the other

limit JH=0 �J̃H=0�, Eq. �50� gives �=−�n+1�. Substituting
this value in Eq. �49� we recover the Wilson ratio for the
Anderson model with JH=0 in the large U regime as RW
=2n / �2n−1� for the SU�2n� model. When JH=0 for the
model used by Nevidomskyy and Coleman, �→�, and RW
=2 corresponding to n independent SU�2� Kondo systems.
This illustrates the fact that the two models are not equiva-
lent, as we will discuss in more detail later.

Returning to the results for JH /��=0.05 as a function of
U /�� we see from the inset of Fig. 10 that, even though JH
is relatively small compared with ��, when U /���5.5 the
value of TK becomes sufficiently small such that JH�TK and
we enter a Kondo regime characterized by a single energy

scale. In Fig. 11, we plot the Wilson �s /� ratio, RW=1+ �Ũ
+ J̃H� /��̃, for the parameter set given in Fig. 10. It shows a
steady increase from a value RW
1 for small U with a lev-
eling off at U /��
5 and then a convergence to the value
RW=8 /3, corresponding to that of the localized S=1 two-
channel Kondo model.

In the Kondo regime for the model with JH�0 with

particle-hole symmetry we have TK=��̃ /4. This regime oc-
curs when JH is large enough so that the triplet state of the
impurity has a much lower energy than the other two-particle
impurity states. The effective coupling of this state to the

conduction electrons, via virtual transitions to either single-
particle or three-particle impurity states induced by the hy-
bridization, leads to an exchange model of a localized spin 1
coupled to the two channels of conduction electrons with an
effective antiferromagnetic exchange interaction Jeff
=4V2 / �U+3JH�. This in turn will lead to a JH-dependent
term in the Kondo temperature of the form TK
exp�
−a�2JH /���, where a is a dimensionless numerical coeffi-
cient. This implies that in the Kondo regime TK will vary
exponentially with JH /��. In Fig. 12, we plot TK from the
NRG results against JH /�� and compare them with an ex-
ponential fit. The inset shows the plot of the logarithm of TK,
ln�TK /���, versus JH /��. It can be seen that the exponen-
tial form does fit well with the results for the Kondo range
JH /���0.1 with the value a=1.49. There is a slight devia-
tion for the largest values of JH shown but the coefficient a
depends on the range chosen for the curve fitting. There have
been NRG calculations by Pruschke and Bulla34 on an impu-
rity model with a Hund’s rule term, who find an exponential
reduction in the width of the Kondo resonance in the impu-
rity one-electron spectral density with increase in JH, which
corresponds at half filling to a exponential reduction in TK.

For the n-channel Kondo model with Hund’s rule cou-
pling, Nevidomskyy and Coleman33 have predicted a power
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FIG. 11. �Color online� A plot of the Wilson ratio RW=1+ �Ũ
+ J̃H� /��̃ versus U /�� for JH /��=0.05 and �=0.01.
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law rather than an exponential dependence of TK with JH in
the Kondo regime where the spins are completely coupled to
give a total spin S=n /2, TK
JH

−�n−1�. We have a Kondo re-
gime with a total spin S=1 for U /��=4 when JH /��
�0.1, and the power-law behavior definitely does not agree
with our numerical results, which show an exponential re-
duction with increase in JH. However, there are differences
between the models. When U is large, the Anderson model
we use is not equivalent to the model of Nevidomskyy and
Coleman. This can be seen clearly for JH=0 electrons; when
U is large our model becomes equivalent to a Coqblin-
Schrieffer or SU�2n� Kondo model with the operators in a
�2n� ! / �n!�2 irreducible representation of the SU�2n� group,
while the model used by Nevidomskyy and Coleman be-
comes n independent SU�2� Kondo models. This is because
the SU�2n� Kondo model here includes orbital fluctuations.
These are only suppressed by switching on the Hund’s rule
term, which also aligns the spins into a total spin S=n /2. In
the Nevidomskyy and Coleman model the orbital fluctua-
tions are not present, and the sole function of the Hund’s rule
term is to align the individual spins into a total spin S=n /2.
This explains why in the case JH=0, we obtain a Wilson ratio
of 2n / �2n−1� in this case while the corresponding result for
Nevidomskyy and Coleman model is 2, independent of n.

Nevidomskyy and Coleman consider the effect of the
Hund’s rule term in order to explain the trend observed in
transition-metal impurity systems, that the Kondo tempera-
ture decreases sharply the larger the value of the impurity
spin S=n /2. To make a comparison in our case between S
=1 /2 and S=1, on the assumption that the orbital fluctua-
tions have been suppressed in each case, we need to compare
the TK for the n=1 model with that for the n=2 model. Due
to the extra factor of 1/2 for n=2 in the exponential term in
the expression given earlier for TK for JH=0, for the same
value of U, TK�n=2��TK�n=1�. When the reduction in
TK�n=2� with JH is included then there is a threshold value
of JH which must be achieved before the Kondo temperature
of the n=2 model �JH�0� becomes less than that of the
model with n=1. If we compare TK for n=1 and U /��=4
with that for n=2 and U /��=4, we find that JH /U must
exceed a value 
0.05 for the TK with S=1 to be smaller than
that for S=1 /2. This threshold value for U /��=4 corre-
sponds to JH /TK�S=1 /2�
30. Once JH exceeds this thresh-
old value, the TK for S=1 will decrease rapidly for larger
values of JH.

Using the renormalized parameters for values of JH /��
=0.05 and JH /��=0.15 taken from Fig. 9 corresponding to
U /��=4 and �=0.01, we have evaluated the expressions
for the dynamic spin susceptibility given in Eq. �39�. The
result for the real part is shown in Fig. 13. It illustrates the
narrowing and height increase in the central peak with the
larger value of JH. In Fig. 14, the imaginary part of �s

+−�	� is
shown. The marked increase in the change in the gradient
through the origin for the larger value of JH, can be ex-
plained as a consequence of the Korringa-Shiba relation
given in Eq. �42�.

IV. CONCLUSIONS

The point of this study here for the n-channel Anderson
model has been to show how the renormalized perturbation

approach �RPT� can provide an asymptotically exact way of
calculating the low-temperature and low-frequency behavior
of the model in all parameter regimes. There have been many
previous studies of related multiorbital impurity models us-
ing a variety of approaches. The general n-channel Anderson
model with finite U has not so far been solved using the
Bethe ansatz, but there are exact solutions using this tech-
nique for the n-channel Kondo model coupled to a spin S
�Refs. 29, 30, and 35� and the n-channel Anderson model in
the infinite U limit. In the latter case the impurity occupation
number is restricted to the range nd�1.31 The main focus of
the work on the n-channel Kondo model, however, has been
on the overscreened case for n�2S, where S is the spin of
the impurity, as the model has a low-energy non-Fermi-
liquid fixed point. Schlottmann and Sacramento,36,37 how-
ever, have considered in detail the Bethe ansatz solution for
the fully compensated case where S=n /2 and compared the
results with the experimental data for the Kondo systems Fe
in Cu and Ag, and Cr in Cu. There have been many NRG
studies of multiorbital models, and this work has been sur-
veyed in the NRG review article.26 The concern in most of
the NRG work has been with the calculation of the one-
electron spectral densities, and mainly for the models with-
out the Hund’s rule term. There has been a DMFT-NRG
study of a two-band Hubbard model by Pruschke and
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Bulla,34 which has a short section on the symmetric two-
channel Anderson model. As in the results reported here,
they found an an exponential reduction in the width of the
Kondo resonance with JH. There has also been a recent study
for the JH=0 model using the local moment approach, which
includes NRG calculations for the case n=2,22 and NRG
studies of capacitively coupled quantum dots.13

The main feature of the RPT approach is that the calcula-
tions are carried out in terms of renormalized parameters
which have a clear physical meaning in terms of the quasi-
particles and their interactions. For the n-channel model,
they correspond to renormalizations of the parameters, �d, �,
U, and JH, which specify the model. Asymptotically exact
expressions can then be derived for the low-temperature be-
havior of the model in terms of these renormalized param-
eters. In the Kondo regime, all the renormalized parameters
can be expressed in terms of a single renormalized energy
scale, the Kondo temperature TK. For the case n=2, we have
been able to deduce the renormalized parameters from the
low-lying excitations in an NRG calculation. The NRG re-
sults provide a comprehensive picture of the low-energy be-
havior of the model. As we have explicit expressions in Eqs.
�20� and �22�–�24� for the specific-heat coefficient, spin, or-
bital, and charge susceptibilities at zero temperature, these
quantities can be calculated simply by substituting the renor-
malized parameters into the relevant formulas. This proce-
dure is very accurate and by passes the usual NRG method
which involves a subtraction procedure to isolate the impu-
rity component. In the Kondo regime, the results explicitly
confirm the relations between the renormalized parameters
predicted by the RPT.

Our numerical results have confirmed the importance of
the effect of the Hund’s rule coupling in reducing the Kondo
temperature predicted by Nevidomskyy and Coleman,33 who
show experimental evidence for a correlation between a large
decrease in Kondo temperature with the magnitude of the
impurity spin for a number of Kondo systems. The Kondo
resonance narrowing is more marked in our results, which
show an exponential reduction, rather than the power-law
dependence found by Nevidomskyy and Coleman. It should
be noted, however, that the models are not equivalent, and, in
particular, the Kondo coupling J of the individual spins in
their model is independent of JH whereas in starting from an
Anderson model, we would have a JH dependence in the
effective value of J. We find that the Hund’s rule coupling
has to exceed a critical value for the Kondo temperature to
decrease with an increase in the spin value from S=1 /2 to
S=1.

In setting up the RPT no approximation has been made,
other than the assumption that the self-energy and its deriva-
tive are real and nondivergent at the Fermi level 	=0. This
means that there is the possibility of extending the results to
higher temperatures and frequencies. Some preliminary re-
sults have been achieved by including diagrams beyond sec-

ond order11,38 for the single-channel model and this topic is
currently being studied. The RPT in the Keldysh formalism
can also be applied to nonequilibrium behavior and has been
applied to the calculation of the nonlinear corrections to the
differential conductance for a quantum dot,39,40 including an
arbitrary magnetic field.41

The RPT approach is not restricted to impurity models but
the calculation of the renormalized parameters for lattice
models presents more of a problem as the NRG method can-
not in general be applied. However, for infinite dimensional
lattice models one can use the DMFT to map the model into
an effective impurity one so the NRG method can then be
used. This approach has been used to calculate renormalized
parameters for the one-band Hubbard and Hubbard-Holstein
models.42,43 The work presented here opens up the possibility
of extending this method to the two-band Hubbard model
with a Hund’s rule coupling. We have found that the Hund’s
rule term plays an important role in enhancing the magnetic
response in the twofold degenerate model. It is known that
the single-band Hubbard model does not provide a basis for
explaining the occurrence of ferromagnetism in 3d metals, as
it predicts a ferromagnetic ground state only in a very re-
stricted parameter regime, very close to half filling and for a
value of U much greater than the band width. It is likely that
the inclusion of the Hund’s rule coupling is essential to de-
scribe ferromagnetism in 3d materials.
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APPENDIX

For the particle-hole symmetric model with n=2, the
model given in Eq. �46� can be derived by taking account to
order �V�2 the effects of virtual excitations from the two-
electron to the local one-electron and three-electron impurity
states. We denote the one-electron basis states, �1↑	, �1↓	,
�2↑	, and �2↓	, by ��	 with �=1,2 ,3 ,4, respectively. The
two-electron states we denote by �� ,��	, with ���� and
��� ,�	 represents the same state. This gives a six-dimensional
basis set. In terms of the Hubbard operators X��,���:���,���
= �� ,��	��� ,���, the Y�,�� are given by

Y�,�� = �
����,�����

�− 1��X��,���:���,���, �A1�

for ����, where �=1 if �������, otherwise �=0. The
Y��,� for ���� can be deduced from Eq. �A1� using Y��,�
= �Y�,���

†.
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